Group V viruses contain ssRNA genomes with a **negative polarity**, meaning that their sequence is complementary to the mRNA. As with Group IV viruses, dsRNA intermediates are used to make copies of the genome and produce mRNA. In this case, the negative-stranded genome can be converted directly to mRNA. Additionally, full-length positive RNA strands are made to serve as templates for the production of the negative-stranded genome. **Group VI** viruses have diploid (two copies) ssRNA genomes that must be converted, using the enzyme **reverse transcriptase**, to dsDNA; the dsDNA is then transported to the nucleus of the host cell and inserted into the host genome. Then, mRNA can be produced by transcription of the viral DNA that was integrated into the host genome. **Group VII** viruses have partial dsDNA genomes and make ssRNA intermediates that act as mRNA, but are also converted back into dsDNA genomes by reverse transcriptase, necessary for genome replication. The characteristics of each group in the Baltimore classification are summarized in Table 21.3 with examples of each group. ### **Baltimore Classification** | Group | Characteristics | Mode of mRNA Production | Example | |-------|---|--|---| | I | Double-stranded
DNA | mRNA is transcribed directly from the DNA template | Herpes simplex
(herpesvirus) | | II | Single-stranded
DNA | DNA is converted to double-stranded form before RNA is transcribed | Canine parvovirus
(parvovirus) | | III | Double-stranded
RNA | mRNA is transcribed from the RNA genome | Childhood
gastroenteritis
(rotavirus) | | IV | Single stranded
RNA (+) | Genome functions as mRNA | Common cold (picornavirus) | | V | Single stranded
RNA (-) | mRNA is transcribed from the RNA genome | Rabies
(rhabdovirus) | | VI | Single stranded
RNA viruses with
reverse
transcriptase | Reverse transcriptase makes DNA from the RNA genome; DNA is then incorporated in the host genome; mRNA is transcribed from the incorporated DNA | Human
immunodeficiency
virus (HIV) | | VII | Double stranded
DNA viruses with
reverse
transcriptase | The viral genome is double-stranded DNA, but viral DNA is replicated through an RNA intermediate; the RNA may serve directly as mRNA or as a template to make mRNA | Hepatitis B virus
(hepadnavirus) | ### **Table 21.3** # **21.2** Virus Infections and Hosts By the end of this section, you will be able to do the following: - List the steps of replication and explain what occurs at each step - Describe the lytic and lysogenic cycles of virus replication - Explain the transmission of plant and animal viruses - Discuss some of the diseases caused by plant and animal viruses - Discuss the economic impact of plant and animal viruses Viruses are obligate, intracellular parasites. A virus must first recognize and attach to a specific living cell prior to entering it. After penetration, the invading virus must copy its genome and manufacture its own proteins. Finally, the progeny virions must escape the host cell so that they can infect other cells. Viruses can infect only certain species of hosts and only certain cells within that host. Specific host cells that a virus must occupy and use to replicate are called **permissive**. In most cases, the molecular basis for this specificity is due to a particular surface molecule known as the viral receptor on the host cell surface. A specific viral receptor is required for the virus to attach. In addition, differences in metabolism and host-cell immune responses (based on differential gene expression) are a likely factor in determining which cells a virus may target for replication. # **Steps of Virus Infections** A virus must use its host-cell processes to replicate. The viral replication cycle can produce dramatic biochemical and structural changes in the host cell, which may cause cell damage. These changes, called cytopathic effects, can change cell functions or even destroy the cell. Some infected cells, such as those infected by the common cold virus known as rhinovirus, die through lysis (bursting) or apoptosis (programmed cell death or "cell suicide"), releasing all progeny virions at once. The symptoms of viral diseases result both from such cell damage caused by the virus and from the immune response to the virus, which attempts to control and eliminate the virus from the body. Many animal viruses, such as **HIV** (human immunodeficiency virus), leave the infected cells of the immune system by a process known as budding, where virions leave the cell individually. During the budding process, the cell does not undergo lysis and is not immediately killed. However, the damage to the cells that the virus infects may make it impossible for the cells to function normally, even though the cells remain alive for a period of time. Most productive viral infections follow similar steps in the virus replication cycle: attachment, penetration, uncoating, replication, assembly, and release (Figure 21.8). ### **Attachment** A virus attaches to a specific receptor site on the host cell membrane through attachment proteins in the capsid or via glycoproteins embedded in the viral envelope. The specificity of this interaction determines the host—and the cells within the host—that can be infected by a particular virus. This can be illustrated by thinking of several keys and several locks, where each key will fit only one specific lock. ## LINK TO LEARNING This video (http://openstax.org/l/influenza) explains how influenza attacks the body. ## **Entry** Viruses may enter a host cell either with or without the viral capsid. The nucleic acid of bacteriophages enters the host cell "naked," leaving the capsid outside the cell. Plant and animal viruses can enter through endocytosis (as you may recall, the cell membrane surrounds and engulfs the entire virus). Some enveloped viruses enter the cell when the viral envelope fuses directly with the cell membrane. Once inside the cell, the viral capsid degrades, and then the viral nucleic acid is released and becomes available for replication and transcription. ### **Replication and Assembly** The replication mechanism depends on the viral genome. DNA viruses usually use host-cell proteins and enzymes to replicate the viral DNA and to transcribe viral mRNA, which is then used to direct viral protein synthesis. RNA viruses usually use the RNA core as a template for synthesis of viral genomic RNA and mRNA. The viral mRNA directs the host cell to synthesize viral enzymes and capsid proteins, and assemble new virions. Of course, there are exceptions to this pattern. If a host cell does not provide the enzymes necessary for viral replication, viral genes supply the information to direct synthesis of the missing proteins. Retroviruses, such as HIV (group VI of the Baltimore classification scheme), have an RNA genome that must be reverse transcribed into DNA, which then is incorporated into the host cell genome. To convert RNA into DNA, retroviruses must contain genes that encode the virus-specific enzyme reverse transcriptase that transcribes an RNA template to DNA. Reverse transcription never occurs in uninfected host cells—the enzyme reverse transcriptase is only derived from the expression of viral genes within the infected host cells. The fact that HIV produces some of its own enzymes not found in the host has allowed researchers to develop drugs that inhibit these enzymes without affecting the host's metabolism. This approach has led to the development of a variety of drugs used to treat HIV and has been effective at reducing the number of infectious virions (copies of viral RNA) in the blood to non-detectable levels in many HIV-infected individuals. ### **Egress** The last stage of viral replication is the release of the new virions produced in the host organism, where they are able to infect adjacent cells and repeat the replication cycle. As you've learned, some viruses are released when the host cell dies, and other viruses can leave infected cells by budding through the membrane without directly killing the cell. Figure 21.8 The influenza reproductive cycle. In influenza virus infection, glycoproteins on the capsid attach to a host epithelial cell. Following this, the virus is engulfed. RNA and proteins are then made and assembled into new virions. Influenza virus is packaged in a viral envelope that fuses with the plasma membrane. This way, the virus can exit the host cell without killing it. What advantage does the virus gain by keeping the host cell alive? ## LINK TO LEARNING Watch a video (https://openstax.org/l/viruses) on viruses, identifying structures, modes of transmission, replication, and more. ### **Different Hosts and Their Viruses** As you've learned, viruses often infect very specific hosts, as well as specific cells within the host. This feature of a virus makes it specific to one or a few species of life on Earth. On the other hand, so many different types of viruses exist on Earth that nearly every living organism has its own set of viruses trying to infect its cells. Even prokaryotes, the smallest and simplest of cells, may be attacked by specific types of viruses. In the following section, we will look at some of the features of viral infection of prokaryotic cells. As we have learned, viruses that infect bacteria are called bacteriophages (Figure 21.9). Archaea have their own similar viruses. # **Bacteriophages** Figure 21.9 Bacteriophages attached to a host cell (transmission electron micrograph). In bacteriophage with tails, like the one shown here, the tails serve as a passageway for transmission of the phage genome. (credit: modification of work by Dr. Graham Beards; scale-bar data from Matt Russell) Most bacteriophages are dsDNA viruses, which use host enzymes for DNA replication and RNA transcription. Phage particles must bind to specific surface receptors and actively insert the genome into the host cell. (The complex tail structures seen in many bacteriophages are actively involved in getting the viral genome across the prokaryotic cell wall.) When infection of a cell by a bacteriophage results in the production of new virions, the infection is said to be **productive**. If the virions are released by bursting the cell, the virus replicates by means of a **lytic cycle** (Figure 21.10). An example of a lytic bacteriophage is T4, which infects **Escherichia coli** found in the human intestinal tract. Sometimes, however, a virus can remain within the cell without being released. For example, when a temperate bacteriophage infects a bacterial cell, it replicates by means of a **lysogenic cycle** (Figure 21.10), and the viral genome is incorporated into the genome of the host cell. When the phage DNA is incorporated into the host-cell genome, it is called a **prophage**. An example of a lysogenic bacteriophage is the λ (lambda) virus, which also infects the **E. coli** bacterium. Viruses that infect plant or animal cells may sometimes undergo infections where they are not producing virions for long periods. An example is the animal **herpesviruses**, including herpes simplex viruses, the cause of oral and genital herpes in humans. In a process called **latency**, these viruses can exist in nervous tissue for long periods of time without producing new virions, only to leave latency periodically and cause lesions in the skin where the virus replicates. Even though there are similarities between lysogeny and latency, the term lysogenic cycle is usually reserved to describe bacteriophages. Latency will be described in more detail in the next section. Figure 21.10 A temperate bacteriophage has both lytic and lysogenic cycles. In the lytic cycle, the phage replicates and lyses the host cell. In the lysogenic cycle, phage DNA is incorporated into the host genome, where it is passed on to subsequent generations. Environmental stressors such as starvation or exposure to toxic chemicals may cause the prophage to excise and enter the lytic cycle. Which of the following statements is false? - a. In the lytic cycle, new phages are produced and released into the environment. - b. In the lysogenic cycle, phage DNA is incorporated into the host genome. - c. An environmental stressor can cause the phage to initiate the lysogenic cycle. - d. Cell lysis only occurs in the lytic cycle. ## **Plant Viruses** Most plant viruses, like the tobacco mosaic virus, have single-stranded (+) RNA genomes. However, there are also plant viruses in most other virus categories. Unlike bacteriophages, plant viruses do not have active mechanisms for delivering the viral genome across the protective cell wall. For a plant virus to enter a new host plant, some type of mechanical damage must occur. This damage is often caused by weather, insects, animals, fire, or human activities like farming or landscaping. Movement from cell to cell within a plant can be facilitated by viral modification of plasmodesmata (cytoplasmic threads that pass from one plant cell to the next). Additionally, plant offspring may inherit viral diseases from parent plants. Plant viruses can be transmitted by a variety of vectors, through contact with an infected plant's sap, by living organisms such as insects and nematodes, and through pollen. The transfer of a virus from one plant to another is known as **horizontal transmission**, whereas the inheritance of a virus from a parent is called **vertical transmission**. Symptoms of viral diseases vary according to the virus and its host (Table 21.4). One common symptom is *hyperplasia*, the abnormal proliferation of cells that causes the appearance of plant tumors known as *galls*. Other viruses induce *hypoplasia*, or decreased cell growth, in the leaves of plants, causing thin, yellow areas to appear. Still other viruses affect the plant by directly killing plant cells, a process known as *cell necrosis*. Other symptoms of plant viruses include malformed leaves; black streaks on the stems of the plants; altered growth of stems, leaves, or fruits; and ring spots, which are circular or linear areas of discoloration found in a leaf. ### Some Common Symptoms of Plant Viral Diseases | Symptom | Appears as | |--------------------------|------------------------------------------------------------------| | Hyperplasia | Galls (tumors) | | Hypoplasia | Thinned, yellow splotches on leaves | | Cell necrosis | Dead, blackened stems, leaves, or fruit | | Abnormal growth patterns | Malformed stems, leaves, or fruit | | Discoloration | Yellow, red, or black lines, or rings in stems, leaves, or fruit | Table 21.4 Plant viruses can seriously disrupt crop growth and development, significantly affecting our food supply. They are responsible for poor crop quality and quantity globally, and can bring about huge economic losses annually. Others viruses may damage plants used in landscaping. Some viruses that infect agricultural food plants include the name of the plant they infect, such as tomato spotted wilt virus, bean common mosaic virus, and cucumber mosaic virus. In plants used for landscaping, two of the most common viruses are peony ring spot and rose mosaic virus. There are far too many plant viruses to discuss each in detail, but symptoms of bean common mosaic virus result in lowered bean production and stunted, unproductive plants. In the ornamental rose, the rose mosaic disease causes wavy yellow lines and colored splotches on the leaves of the plant. ## **Animal Viruses** Animal viruses, unlike the viruses of plants and bacteria, do not have to penetrate a cell wall to gain access to the host cell. The virus may even induce the host cell to cooperate in the infection process. Non-enveloped or "naked" animal viruses may enter cells in two different ways. As a protein in the viral capsid binds to its receptor on the host cell, the virus may be taken inside the cell via a vesicle during the normal cell process of *receptor-mediated endocytosis*. An alternative method of cell penetration used by non-enveloped viruses is for capsid proteins to undergo shape changes after binding to the receptor, creating channels in the host cell membrane. The viral genome is then "injected" into the host cell through these channels in a manner analogous to that used by many bacteriophages. Enveloped viruses also have two ways of entering cells after binding to their receptors: receptor-mediated endocytosis, or **fusion**. Many enveloped viruses enter the cell by receptor-mediated endocytosis in a fashion similar to that seen in some non-enveloped viruses. On the other hand, fusion only occurs with enveloped virions. These viruses, which include HIV among others, use special fusion proteins in their envelopes to cause the envelope to fuse with the plasma membrane of the cell, thus releasing the genome and capsid of the virus into the cell cytoplasm. After making their proteins and copying their genomes, animal viruses complete the assembly of new virions and exit the cell. As we have already discussed using the example the influenza virus, enveloped animal viruses may bud from the cell membrane as they assemble themselves, taking a piece of the cell's plasma membrane in the process. On the other hand, non-enveloped viral progeny, such as rhinoviruses, accumulate in infected cells until there is a signal for lysis or apoptosis, and all virions are released together. As you will learn in the next module, animal viruses are associated with a variety of human diseases. Some of them follow the classic pattern of **acute disease**, where symptoms get increasingly worse for a short period followed by the elimination of the virus from the body by the immune system and eventual recovery from the infection. Examples of acute viral diseases are the common cold and influenza. Other viruses cause long-term **chronic infections**, such as the virus causing hepatitis C, whereas others, like herpes simplex virus, only cause **intermittent** symptoms. Still other viruses, such as human herpesviruses 6 and 7, which in some cases can cause the minor childhood disease roseola, often successfully cause productive infections without causing any symptoms at all in the host, and thus we say these patients have an **asymptomatic infection**. In hepatitis C infections, the virus grows and reproduces in liver cells, causing low levels of liver damage. The damage is so low that infected individuals are often unaware that they are infected, and many infections are detected only by routine blood work on patients with risk factors such as intravenous drug use. On the other hand, since many of the symptoms of viral diseases are caused by immune responses, a lack of symptoms is an indication of a weak immune response to the virus. This allows the virus to escape elimination by the immune system and persist in individuals for years, all the while producing low levels of progeny virions in what is known as a chronic viral disease. Chronic infection of the liver by this virus leads to a much greater chance of developing liver cancer, sometimes as much as 30 years after the initial infection. As already discussed, herpes simplex virus can remain in a state of latency in nervous tissue for months, even years. As the virus "hides" in the tissue and makes few if any viral proteins, there is nothing for the immune response to act against, and immunity to the virus slowly declines. Under certain conditions, including various types of physical and psychological stress, the latent herpes simplex virus may be reactivated and undergo a lytic replication cycle in the skin, causing the lesions associated with the disease. Once virions are produced in the skin and viral proteins are synthesized, the immune response is again stimulated and resolves the skin lesions in a few days or weeks by destroying viruses in the skin. As a result of this type of replicative cycle, appearances of cold sores and genital herpes outbreaks only occur intermittently, even though the viruses remain in the nervous tissue for life. Latent infections are common with other herpesviruses as well, including the varicella-zoster virus that causes chickenpox. After having a chickenpox infection in childhood, the varicella-zoster virus can remain latent for many years and reactivate in adults to cause the painful condition known as "shingles" (Figure 21.11). Figure 21.11 A latent virus infection. (a) Varicella-zoster, the virus that causes chickenpox, has an enveloped icosahedral capsid visible in this transmission electron micrograph. Its double-stranded DNA genome becomes incorporated in the host DNA and can reactivate after latency in the form of (b) shingles, often exhibiting a rash. (credit a: modification of work by Dr. Erskine Palmer, B. G. Martin, CDC; credit b: modification of work by "rosmary"/Flickr; scale-bar data from Matt Russell) Some animal-infecting viruses, including the hepatitis C virus discussed above, are known as **oncogenic viruses**: They have the ability to cause cancer. These viruses interfere with the normal regulation of the host cell cycle either by introducing genes that stimulate unregulated cell growth (oncogenes) or by interfering with the expression of genes that inhibit cell growth. Oncogenic viruses can be either DNA or RNA viruses. Cancers known to be associated with viral infections include cervical cancer, caused by human papillomavirus (HPV) (Figure 21.12), liver cancer caused by hepatitis B virus, T-cell leukemia, and several types of lymphoma. Figure 21.12 HPV, or human papillomavirus, has a naked icosahedral capsid visible in this transmission electron micrograph and a double-stranded DNA genome that is incorporated into the host DNA. The virus, which is sexually transmitted, is oncogenic and can lead to cervical cancer. (credit: modification of work by NCI, NIH; scale-bar data from Matt Russell) # LINK TO LEARNING This video (http://openstax.org/l/animal_viruses) shows the life cycle of a virus. # 21.3 Prevention and Treatment of Viral Infections By the end of this section, you will be able to do the following: - · Identify major viral illnesses that affect humans - Compare vaccinations and anti-viral drugs as medical approaches to viruses Viruses cause a variety of diseases in animals, including humans, ranging from the common cold to potentially fatal illnesses like meningitis (Figure 21.13). These diseases can be treated by antiviral drugs or by vaccines; however, some viruses, such as HIV, are capable both of avoiding the immune response and of mutating within the host organism to become resistant to antiviral drugs.